
Lo(fex) and Behold: Extending Previous Analyses of

Lofexidine’s Efficacy for Opiate Withdrawal Symptoms

Abstract

This paper analyzes the National Institute on Drug and Abuse efficacy trial ti-
tled, A Phase III Placebo-Controlled, Double-Blind Multi-Site Trial of Lofexidine for
Opiate Withdrawal. We extend the analysis of Yu et al., 2008 [1] on the relationship
between lofexidine and opiate withdrawal symptoms as measured by the Modified
Himmelsbach Opiate Withdrawal Scale (MHOWS). We present a Bayesian hierar-
chical model to examine the relationship between MHOWS score, treatment, and
participant-level covariates. We additionally conduct a mediation analysis to explore
how lofexidine, which is commonly used to alleviate hypertension, may influence
MHOWS beyond reducing blood pressure. Finally, we introduce a Cox proportional
hazards model to predict participant dropout. From the hierarchical model, we find
that treatment results in a statistically significant decrease in peak MHOWS scores
as compared to placebo, holding all other covariates constant. However, our medi-
ation analysis challenges this result, finding that lofexidine is no longer significant
when systolic blood pressure is excluded from the considered symptoms. In the
survival analysis, we find that lofexidine reduces the risk of trial dropout.
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1 Introduction

1.1 Motivation

The United States is confronting an unprecedented opioid crisis. From 1999 to 2021,
nearly 645,000 people died from an overdose involving opioids [2], with a more than
600% increase in fatalities occurring between 1999 and 2021 [3]. At the individual level,
increased dependence on opioids has manifested in severe ways, including premature
mortality, increased healthcare costs, and challenging opiate withdrawal experiences [4].
On a societal scale, the effects are equally dire, marked by increased unemployment rates
and a heightened strain on healthcare resources [5]. These profound consequences un-
derscore the urgency of developing effective treatment strategies for opioid use disorder.

In this context, lofexidine—a nonopiate historically used in hypertension treatment—has
emerged as a candidate for alleviating opioid withdrawal symptoms, a critical compo-
nent of opioid use disorder treatment. Usage in over 75,000 opiate detoxification cases in
the United Kingdom, as well as preclinical research in mice studies in the United States,
provide a basis for exploring the efficacy of alpha2-adrenergic agents such as lofexidine in
treating and reducing the effects of opiate withdrawal; the success of such trials allowed
for the Phase III trial that formed the basis for Yu et al.’s analysis. [6]. Our analysis
aims to strengthen the methodology and re-evaluate the findings of Yu et al [1]. We
extend alternative models for modeling lofexidine efficacy and patient dropout, enabling
us to answer the following questions:

1. Does lofexidine have a statistically significant relationship with opiate withdrawal
symptoms experienced—as measured by MHOWS—after controlling for relevant
patient-level covariates?

2. Does lofexidine have a statistically significant relationship with a patient’s likeli-
hood to drop out of the study (“early termination”) after controlling for relevant
patient-level covariates?

3. Does controlling for the potentially confounding effects of lofexidine’s prior usage
as an anti-hypertensive treatment alter its observed impact on alleviating opiate
withdrawal symptoms?

1.2 Trial Description

To investigate the efficacy of lofexidine, the National Institute on Drug and Abuse
(NIDA) developed a Phase III, placebo-controlled, double-blind, randomized trial in
an inpatient setting [1]. The trial studied 68 opiate-dependent individuals with 35 ran-
domized to the lofexidine treatment and 33 to the placebo. The study was conducted
at three different research sites across the country in Los Angeles, CA, New York, NY,
and Philadelphia, PA [1].

Yu et al.’s experiment consists of three phases: first, on Days 1-3, the opioid ago-
nist stabilization phase occurs, where all patients are given a standardized amount of
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morphine to reset the timeline of the psychological effects of withdrawal. Second, on
Days 4-8, patients are given either the placebo or lofexidine treatment, and an array of
medical data is collected. Finally, starting on Day 9, all patients receive the placebo
treatment for two days. On Day 11, all subjects are discharged [1].

The primary outcome measure for the study was the Modified Himmelsbach Opiate
Withdrawal Scale (MHOWS) on Day 5, which is the second day of opioid detoxification
treatment [1]. MHOWS was approved by the FDA in 1999 as the primary outcome
measure for this trial based upon its objectivity and reliability in measuring treatment
efficacy for opiate withdrawal in clinical trials [6]. The usage of a standardized dose of
initial morphine during the initial phase of the trial satisfies the prerequisite for usage
of MHOWS as an opiate withdrawal metric for this clinical trial [6].

1.3 Data Description

The data for our extended analysis comes from 38 forms collected by physicians and
other study administrators to track individual patient medical readings and withdrawal
systems over the trial period. The data was aggregated for each patient and stored
as IMC01 through IMC36 with two supplementary forms (IMCENR and FNLPKRES).
The full data dictionary can be found in the NIDA-CSP-1020 Protocol [7].

Exploratory data analysis was conducted on the potential covariates, as well as their
relations with our target variables MHOWS and dropout day denoted in the research
questions. This analysis is detailed in Appendix 4.5.

2 Methodology

2.1 Data Processing

To make the data suitable for modeling, we first aggregated the datasets of interest based
on patient ID number and site, since the data of interest were collected on multiple
separate forms.

Three form questions track whether a patient is a heroin, hydromorphone, or mor-
phine user, and another three track how much the patients use those opiates on a daily
basis. Since we are primarily interested in the severity of opiate dependency (regardless
of the actual opiate being used), we chose to combine these variables into one comprehen-
sive covariate: morphine milligram equivalents (MME), which converts the potency of
each of these drugs into units of morphine. This standardizes the opiate potency across
several drugs and consolidates our covariates into a singular standardized measure of
prior drug use severity. MME is an accepted tracker of opioid potency as per the CDC
[8] and HHS [9]. Standard MME scales do not have a conversion for heroin, so we equate
1mg of heroin to 2 units of morphine as heroin has been found to have approximately
two times the potency of morphine [10].

In the process of replacing missing data, we made the assumption that data miss-
ing not at random (MNAR) could be treated as a negative response. For instance,
some questions about opiate use had only positive or missing responses. Since every
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participant in the study filled out at least some part of each form, we assumed that a
non-response could be treated as a negative response. We subsequently imputed the
remaining missing data using Multiple Imputation by Chained Equations (MICE) [11].
MICE requires that missing data be missing at random (MAR). After addressing the
MNAR data, we assume all remaining missingness is random and proceed with MICE.

We then calculated the MHOWS scores for each patient using the formula reference
in the study protocol, which is detailed in Table 5 in Appendix 4.1. Consistent with the
study protocol [6], we made several assumptions about the data in order to calculate
MHOWS, including carrying forward data from patients who dropped out on Day 4 and
averaging Day 4 and Day 6 data from patients who were not evaluated on Day 5. This
process is detailed in Appendix 4.1.

2.2 Modeling MHOWS

Bayesian modeling offers several advantages over traditional linear regression or mixed
modeling (as implemented by the previous analysis). Incorporating prior knowledge
into the model allows for a probabilistic framework and a more nuanced understanding
of distributions over possible values. By providing a full probability distribution over
our parameters and predictions, Bayesian regression allows us to further quantify our
uncertainty. This approach can lead to more robust predictions, especially in cases
where data is scarce or noisy. With the scarcity (n = 68) in our dataset, we argue that
incorporating a Bayesian model is justified.

To address the first research question, we chose to proceed with a Bayesian hierar-
chical model. In many clinical settings, including the NIDA trial, subject data is often
drawn from population clusters. This may violate the independence assumption, as peo-
ple within clusters might be more similar to each other than people between clusters.
Hierarchical models allow us to isolate this bias and capture the variation of predictors
across different groups. In our case, we identified testing site as a level in the hierar-
chical model to account for potential differences between patients, doctors, and general
medical treatment across different testing sites. This is consistent with the analysis of
many multisite trials [12] and the frequentist mixed-modeling approach of Yu et al.

Since we anticipate the random effect captures much of the unseen variability, we
leave the remaining β values for our covariates of interest untouched across the three
sites. This implies that we do not expect that age, weight, race, etc. will affect MHOWS
differently across different sites and that the differences between trial sites will be cap-
tured solely in varying the intercept.

In addition to a Bayesian hierarchical approach, we also formulate a Bayesian pooled
approach without grouping by site. This serves as a straightforward, non-hierarchical
baseline model. This comparative analysis allows us to gauge whether the additional
complexity introduced by the hierarchical model is justified by its performance. The
assumptions for Bayesian modeling are met and are detailed in Appendix Section 4.3.
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2.2.1 Hierarchical Model Framework

In our hierarchical model, we model the variability of predictors between and within
different testing sites. First, we define

• Xi,j ∈ Rn: the vector containing n predictors for the ith subject in site j.

• Yi,j ∈ R: MHOWS score for the ith subject in site j.

2.2.1.1 Variability within Sites For each site j, each subject’s MHOWS score is
normally distributed with mean, µi,j . We then model each subject’s µi,j as a linear
relationship between a subject’s predictors.

Yi,j |β0j , β, σy ∼ N(µi,j , σ
2
y) where µi,j = β0j + βXi,j

• β0j : intercept of the model for site j. In a varying intercepts model, this is group-
specific.

• β = [β1, β2, ..., βn]: a vector of coefficients for the predictors in the data.

• σy: within-site variability.

2.2.1.2 Variability between Sites In our model, since we are focused on modeling
the variability of intercepts between sites, we will look to define how these intercepts
are distributed. We will assume that site-specific intercepts will vary normally around
a global intercept.

β0j | β0, σ0 ∼ N(β0, σ
2
0)

• β0: the global average intercept across all sites. It defines what the expected
average site’s baseline MHOWS score is.

• σ0: between-site variability

2.2.2 Prior Elucidation and Sensitivity Analysis

We have defined global parameters: β0, σ0, β, and σy. We need to establish priors for
each of these parameters.

β0 ∼ N(m0, s
2
0), β ∼ N(m1, s

2
1)

σy ∼ Exp(λy), σ0 ∼ Exp(λ0)

• β0: This is the global intercept, or the mean MHOWS score when all covariates are
held at zero or reference. The protocol notes that MHOWS scores are known to be
normally distibruted.[6] We were able to determine that MHOWS scores vary from
approximately 0 to 133 (see 4.6) through an analysis of the individual components
in the computation. As determined through extensive prior elucidation work (see
Appendix 4.7), data from Phase II was taken to determine a collection of justifiable,
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informative priors for β0. A non-informative prior was also considered, centering
the distribution at the mean of 0 and 133 with a large variance.

We conducted a sensitivity analysis to determine how robust the model was to
changes in the prior mean and variance. We tested multiple prior means and
iterated across a range of variances to examine the effect these incremental changes
had on posteriors. Conducting a sensitivity analysis on variance was particularly
important given that while our priors are based primarily off of data from Phase
II, we add a term to our prior variance as an additional expression of uncertainty,
which is also detailed in Appendix 4.7.

• β: We were not able to gather conclusive information on how changes in each pre-
dictor affect MHOWS, so we initialize weakly informative normal priors centered
around 0 with autoscaling. The rstanarm package internally adjusts the scales of
our priors based on the observed standard deviation.

• σy and σ0: Standard deviations between and within groups are strictly positive,
so we choose to initialize each of these priors as an exponential distribution with
mean 1 with autoscaling.

2.2.3 MHOWS Model Covariates

To answer the first research question regarding lofexidine’s relationship to MHOWS, we
look at the beta parameter for a lofexidine treatment indicator variable. This parameter
represents the expected difference in MHOWS for a participant, as conditioned on the
statistics of said participant (a difference in conditional expectation). This can otherwise
be expressed as the expected difference in MHOWS for a given participant with the
specific covariates of the participant being analyzed.

The final covariates used for our MHOWS hierarchical model were treatment (lofex-
idine vs. placebo, our primary covariate of interest), age, gender, weight, race, MME
(taken over the preceding 30 days), cigarettes smoked by the patient (in the last 24
hours), and use of a nicotine patch. We justify our inclusion of each covariate within
our model in Table 6 in Appendix 4.4.

2.2.4 MHOWS Model Metrics

After establishing covariates, we iteratively conditioned on each of our prior distribution
subsets to generate 9 posterior distributions for our model. To evaluate the performance
of our models on predicting MHOWS, we calculated the median absolute error (MAE)
for each of the 9 fitted models. MAE was selected as it is more resilient to outliers than
other common metrics such as mean squared or mean absolute error. MAE describes
the median difference between the observed MHOWS scores and the posterior predictive
means. We took the model with the lowest median absolute errors and performed further
analysis, including posterior predictive checks and p-direction analysis.
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2.3 Modeling Survival

In the context of this secondary outcome model, survival represents someone who has
made it through eight days of the study. This data is right censored. Dropping out from
the study (early termination) before eight days is thus considered as not survival.

2.3.1 Kaplan-Meier Estimate and Log-Rank Test

In the original study, the authors used a Kaplan-Meier curve for survival analysis and
conducted a log-rank test for differences in time to early termination between placebo
and lofexidine patients [1]. We replicate their statistical tests and find the same results.
As per the log-rank test, there is a statistically significant difference between the expected
dropouts between the lofexidine and placebo groups (p = 0.02).

Table 1: Observed and Expected Values for Treatment Groups

Treatment N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V

LOFEXIDINE 35 23 29.7 1.53 5.35
PLACEBO 33 28 21.3 2.14 5.35

Chisq= 5.3 on 1 degree of freedom, p= 0.02

2.3.2 Cox Model

In modeling survival, we extend the original authors’ survival analysis with our Cox pro-
portional hazards (CPH) model. Whereas the original CPH model only relates dropout
to the treatment (lofexidine vs. placebo), our model has the following form:

λ(t) = λ0(t)exp(β1Treatment + β2Age + β3Is male + β4Is other race + β5Is white + β6Weight

+β7Uses nicotine patch + β8Cigarettes smoked + β9MME over 30 days

+β10Baseline Systolic Blood Pressure + β11Need for Psychiatric Treatment + µTesting Center)

where λ0(t) represents the baseline hazard for when our covariates are equal to 0
(with no assumed shape) and µSite is a random effect for the testing site. The baselines
for the categorical variables of gender, race, treatment, and nicotine patch usage are
female, Black, lofexidine treatment, and active user respectively.

These covariates are the same as our Bayesian hierarchical model, with the addition of
a numeric variable that tracks how many cigarettes the patient smoked in the preceding
24 hours (from when the MHOWS measurements were taken), a categorical variable
indicating whether a patient currently uses a nicotine patch, and a numeric variable that
records an interview’s opinion on the patient’s need for psychiatric treatment, recorded
on a scale from 1-10. The former two covariates are included because a patient’s nicotine
dependency could affect their likelihood of remaining in the study; as per the study
protocol, patients were offered financial compensation to stop smoking and use a nicotine
patch. As such, we were interested in the impact of the patient’s nicotine usage on their
overall likelihood of remaining in the study, something that the original analysis does
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not consider. The latter covariate is included as a metric of discomfort, as a participant
being susceptible to psychological problems may make them more likely to drop out of
the study.

2.4 Mediation Analysis

Prior studies have demonstrated that lofexidine lowers blood pressure (Montgomery et.
al). The NIDA-CSP-1020 protocol describes the MHOWS calculation in detail, which
includes a systolic blood pressure measurement where 1 point is allocated for each 2 mm
Hg. rise up to 30mm. Thus, in directly modeling MHOWS, we capture this known effect
of lofexidine. For any participant that comes in with high blood pressure, we can expect
that on average, their blood pressure measurement will decrease, explicitly reducing that
part of the MHOWS calculation. However, we do not know how it will associate with
the other opiate withdrawal symptoms.

We offer an auxiliary analysis in which we remove the systolic blood pressure measure-
ment from the MHOWS score, producing a new target variable: MMHOWS (Modified
MHOWS, or MHOWS without blood pressure). For this auxiliary analysis, we directly
modify the dependent variable to isolate the known effect of lofexidine from unknown
effects. We define the unknown effects to be lofexidine’s impact on other withdrawal
symptoms. Thus, this analysis seeks to determine the extent to which lofexidine relates
to withdrawal symptoms on the MHOWS scale other than blood pressure.

We view this framework in the context of mediation analysis, exploring unknown
mediated pathways between lofexidine and other opiate withdrawal symptoms in the
MHOWS score. Within a mediation analysis framework, our MHOWS model represents
the total effect (c-path), establishing the overall effect of lofexidine on opiate withdrawal
symptoms. Our auxiliary model for MMHOWS then models the direct effect (c’-path),
capturing the effect of lofexidine on MHOWS that is not mediated by blood pressure.
The mediated effect (ab-path) can then be captured within the difference of the total
and direct effect, such that we come to understand the proportion of lofexidine’s impact
on withdrawal severity that operates through its known effect on blood pressure. In
order to ensure a robust Bayesian model, we make use of rstanarm’s autoscale such that
we can use our research about priors for MHOWS mean and variance in the MMHOWS
model after scaling them. Our mediation analysis was preceded by testing the classical
assumptions for mediation analysis, as seen in Appendix 4.9.

3 Results

3.1 Bayesian hierarchical models

After performing Bayesian estimation via Markov chain Monte Carlo (MCMC) algo-
rithms, the median absolute errors of the posterior distributions faceted by global inter-
cept prior are shown below.

As shown in Table 2, the a global intercept prior of mean 19.3 and standard deviation
of 2 resulted in the lowest MAE, and the complete pooled model performed the worst
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Table 2: Median Absolute Errors

Model Intercept Prior MAE Scaled MAE

N(19.3, 22) 7.36 0.510
N(19.3, 52) 7.75 0.542
N(19.3, 72) 7.98 0.558
N(19.3, 102) 8.20 0.565
N(30.3, 22) 8.24 0.570
N(30.3, 52) 8.20 0.568
N(30.3, 72) 8.26 0.560
N(30.3, 102) 8.12 0.559
N(66.5, 202) 8.32 0.569
Complete Pooled 8.35 0.574

(a) Posterior Predictive Checking (b) p-direction areas for all covriates

in terms of median absolute error. This suggests that testing site might indeed have
an effect on MHOWS scores, and we cannot assume independence between and within
testing groups.

Furthermore, there is also an observable positive correlation between intercept stan-
dard deviation prior and MAE. In fact, the weakly informative prior centered around
the mean of all possible MHOWS scores had the second worse MAE score of 8.32. Con-
sidering we have an empirical understanding of possible MHOWS scores from previous
trials, this observation seems sensible.

Finally, after plotting the posterior predictive check for the N(19.322) prior model
in Figure 1a, we see that our model reasonably approximates the shape of the observed
distribution and the variability of MHOWS scores. The ranges of our posterior prediction
MHOWS scores appear to be within the range of the actual MHOWS scores.

3.1.1 Intercept Variability

The intercept row in Table 3 compares intercepts between the three sites. With posterior
mean intercepts of 37.26, 39.11 and 39.09 for testing sites 1, 162, and 733 respectively,
site 1 seems to have a lower baseline MHOWS score compared to the other two. Thus,
with all other covariates held equal, we would expect site 1 to have a roughly 2-unit
lower MHOWS score than sites 162 and 733. This supports our initial claim that there
might be variation between testing sites in this lofexidine study.
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Table 3: Bayesian Hierarchical Linear Model

Covariate Coefficient 95% HDI p-direction

Intercept 34.70 21.20, 47.23 1.00
CENTER:1 +2.56 — —
CENTER:162 +4.41 — —
CENTER:733 +4.39 — —

Treatment
Placebo — — —
Lofexidine -5.60 -12.48, 0.9510

Age 0.842 -3.38, 5.31 0.6532

Race
African-American — — —
Other 1.40 -11.16, 13.97 0.5884
White -3.35 -11.83, 5.26 0.7782

Weight -2.15 -7.23, 2.90 0.8053

Height 3.32 -2.00, 8.67 0.8880

Gender
Female — — —
Male -10.27 -21.99, 2.23 0.9531

Baseline Systolic Blood Pressure 2.36 -1.58, 6.24 0.8832

MME (Over 30 days) 2.04 -1.77, 5.61 0.8610

HDI = High Density Interval, p-direction = probability of direction

3.1.2 Treatment Group Analysis

Our results indicate that individuals within the lofexidine treatment group are expected
to have a 5.60-unit lower MHOWS score, on average, than subjects in the placebo treat-
ment group, when holding all other covariates constant and having a variable intercept
based on testing site.

We evaluate the statistical confidence of this covariate effect. In a Bayesian approach,
there is no notion of a p-value, as we are dealing with distributions and uncertainty rather
than point estimates. In this analysis, we consider “probability of direction,” which
describes the probability that a certain effect (or covariate) is positive or negative. A
simulation study by Makowski et al., 2019 [13] notes this the probability of direction
(p-direction) metric is the closest statistical equivalent to the frequentist p-value. It has
a mathematical correspondence with the p-value, denoted p-value = 2(1− p-direction).

Based on this methodology, we calculate the p-value of the lofexidine treatment
covariate to be roughly 0.098. Thus, at a significance level of 0.10, taking lofexidine
results in a statistically significant decrease in Day 5 MHOWS scores as compared to
placebo. The presence of this significance leads us to question lofexidine’s historical use
as an anti-hypertensive medication and whether that affects the statistical significance of
lofexidine treatment in opiate withdrawal. We explore this question in depth in Section
3.3.
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3.1.3 Sensitivity Analysis

The results of our sensitivity analysis can be found in Appendix 4.8. They show that
our β coefficients are robust to various sets of priors.

3.2 Survival

Table 4: Hazard Ratios for Various Characteristics

Characteristic HR 95% CI p-value

Treatment
Lofexidine — — —
Placebo 1.81 0.98, 3.37 0.060

Age 1.05 1.00, 1.10 0.037

Race
African-American — —
Other 0.54 0.19, 1.54 0.3
White 0.86 0.41, 1.82 0.7

Weight 1.00 0.99, 1.01 0.6

Gender
Female — — —
Male 0.41 0.15, 1.14 0.089

Cigarettes smoked (last 24 hours) 1.00 0.89, 1.13 ¿0.9

Nicotine Patch
Used at All Times — — —
Not Used 3.92 1.01, 15.2 0.049

Baseline Systolic Blood Pressure 0.99 0.96, 1.01 0.3

MME (Over 30 days) 1.00 1.00, 1.00 0.2

Need for Psychiatric Treatment 1.04 0.93, 1.16 0.5

1 HR = Hazard Ratio, CI = Confidence Interval

Table 4 contains the results from our mixed-effects CPH model. We find that the
treatment a patient receives has an association with an increased hazard ratio that is
statistically significant at the α = 0.1 level but not at the α = 0.05 level (p = 0.06). A
hazard ratio of 1.81 implies that it is nearly two times as likely that a patient receiving
a placebo drops out than a patient receiving lofexidine, all else held constant.

Age is another covariate that is statistically significant. (p = 0.037). The HR of 1.05
implies that a one-year increase in age, all else held constant, is associated with a 5%
increase in the hazard (chance of failing to complete the study). Additionally, being male
is associated with an HR of 0.41, implying that all else held constant, men are much
less likely to drop out of the trial than women. This statistic is also significant only
at the α = 0.1 level (p = 0.089). However, we caveat this finding by emphasizing the
small sample size and the even smaller number of female patients upon which the model
was developed. Finally, the non-usage of a nicotine patch was statistically significant
(p = 0.049) and was associated with a HR of 3.92, meaning those not using a patch
were nearly 400% more likely to drop out, all other covariates held constant. Again, we
reiterate that only a small subset of patients wore a nicotine patch, but this suggests
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(a) Individual risk scores, stratified by
treatment

(b) Predicted survival from Cox mixed-
effects model

that the financial incentive associated with remaining in the study while using only a
nicotine patch might have affected an individual’s likelihood to drop out.

Our findings on treatment significance are further supported by risk scores and pre-
dicted survival curves, which show clear visual distinctions between the patients receiving
lofexidine and those receiving the placebo. Figure 2a shows the risk scores, or the indi-
vidual predicted hazards for each patient given their treatment and covariates; patients
receiving the placebo have a higher 25th percentile risk, a higher median risk, and a
higher 75th percentile risk. Figure 2b shows the predicted survival curves from the
CPH model. For each day, the probability that patients receiving lofexidine “survive”
(continue in the trial) is higher than their counterparts receiving placebo. As such, both
figures support our findings that treatment has a significant impact on individual hazard.

Overall, we find that age, use of a nicotine patch, treatment, and gender are as-
sociated with a change in the hazard of an individual patient, and that the remaining
covariates appear to have a hazard ratio close to 1, indicating that they have little impact
on total survival. Although we do not find the treatment to be statistically significant at
the same level as the original analysis, we still see that placebo is associated with a higher
hazard (thus implying that lofexidine is associated with a lower hazard), reinforcing the
findings of Yu et al [1].

3.3 Mediation Analysis

Upon changing our variable of interest from MHOWS to MMHOWS, we find that the
indicator for treatment is no longer statistically significant at the α = 0.1 level. This
finding implies that without the inclusion of systolic blood pressure in MHOWS, lofex-
idine may no longer have as strong an association with lowered MHOWS scores. As
such, we leave our discussion of the first research question open to the possibility that
lofexidine does not alleviate the other symptoms of opiate withdrawal nearly as much
as it reduces blood pressure. However, the findings of our survival model still support
the claim that lofexidine was correlated with a much lower hazard, which implies that
neither model alone tells the entire story.
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3.4 Limitations and Future Work

The main limitations of our MHOWS analysis are small dataset size and the risk of
overfitting. Given the relatively small number of data points (n = 68), our analysis has
relatively low power and significance, and would likely benefit from being applied to a
study with more patients. We thus see in our uncertainty quantification that we have
wide distributions for our estimates of the beta values for our covariates. Our choice of
Bayesian hierarchical modeling is sensible in that it is more robust to overfitting in that
the Bayesian posterior penalizes more complex model structure (“shrinkage”). However,
it is still possible to overfit the data, especially with our small dataset size. Finally,
in choosing to do a Bayesian analysis, our model is computationally intensive and is
subject to the influence of priors. While this can be helpful, a bad choice of priors can
lead to poor model convergence and less accurate estimates of the beta coefficients in
our model. Though our sensitivity analyses indicate robustness, additional examination
may be warranted.

Cox Survival Analysis also has a few limitations. Similar to our MHOWS model, in
using so many covariates with a small dataset, there is certainly a risk of overfitting.
Additionally, the model is semiparametric, which means we do not define a baseline
hazard. This can make it difficult to obtain absolute risk estimates over time, limiting
the model’s ability to provide complete predictions of survival probabilities. It would
have been ideal to compare against another semiparametric model, such as the Buckley-
James estimator, as well as parametric models, in order to have a fair and effective
baseline to understand how well our CPH model fit the data.

Opting for a Bayesian approach, we were able to obtain a more holistic view of
lofexidine’s efficacy for opioid withdrawal. We find the 3.2mg dose of lofexidine, as
compared to the placebo, causes a statistically significant reduction in MHOWS scores
and makes patients less likely to withdraw from the trial.

Using the Cox model, we were also able to show that users using a nicotine patch
were far less likely to withdraw from the trial, all else held constant. We cannot unable
to determine exactly why this might be—financial incentive may have altered behavior
in the trial, but it may also be that patients attempting to quit nicotine concurrently
might be more determined to surmount their addiction. In any case, this finding is
notable and may have implications for trial design in the substance withdrawal space
moving forward, particularly when multiple substances are interacting.

Our findings from the mediation analysis suggest that the impact of systolic blood
pressure changes on MHOWS may impact clinical perceptions of its usefulness in treating
opiate withdrawal and requires future research. In particular, extended research on
lofexidine’s impact on withdrawal symptoms beyond blood pressure would be beneficial.
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4 Appendix

4.1 MHOWS Calculation

The score for any day is the sum of the points outlined in Table 5 [6].

Table 5: Scoring System for Symptoms

Symptom Points

Emesis

0 points if the number of emesis is 0 or missing for the day;
5 points if the number of emesis is 1 for the day;
10 points if the number of emesis is 2 for the day;
15 points if the number of emesis is >3 for the day;

Yawning 1 point if observed on the day
Lacrimation 1 point if observed on the day
Rhinorrhea 1 point if observed on the day
Perspiration 1 point if observed on the day
Tremor 3 points if observed on the day
Goose-flesh 3 points if observed on the day
Anorexia 3 points if appetite is coded as “poor” or “none” for any meal that day
Restlessness 5 points if observed on the day
Pupil dilation 1 point for each 0.1 mm increase in pupil size
Temperature 1 point for each 0.1 degree C. rise
Respiration 1 point for each respiration per minute increase
Systolic BP 1 point for each 2 mm Hg. rise (up to 30 mm)
Weight 1 point for each pound loss

Though our variable of interest is Day 5 MHOWS scores, several considerations
were made in the study protocol to allow for score calculations in the presence of data
missingness. In particular, if a patient is missing any or all of the data on Day 5, the
study proposes imputating the arithmetic mean of Day 4 and Day 6 metrics [6]. In the
event that the patient dropped out on Day 4 but was evaluated on this day, these Day
4 values are carried forward.

4.2 Miscellaneous Data Cleaning

During our analysis, we discovered a clerical error in the height column. One patient has
a listed height of 5.9 inches, far less than the height of the shortest adult ever recorded.
We reasonably assume that the patient is actually 5 foot 9 inches, or the decimal was
added by accident and the patient is 59 inches. We used a CDF of heights from the U.S.
National Center for Health Statistics and found that the probability of a given 39-year-
old, 160 lbs male patient being 59 inches tall is less than 0.001. As such, we presume
the person is truly 5 foot 9 inches, (69 inches). We replace this height accordingly for
the remainder of our analysis, noting that this value may be inaccurate.

4.3 Bayesian Model Assumptions

To model our data using a hierarchical model, the following assumptions are satisfied.

14



• Structure of Data: Outcomes Yi,j of any group are independent of those from
another group. However, within group, there may be correlations.

• Linear Relationship: Within any group j, the outcome and predictors have a linear
relationship.

• Variability within Groups: Observed outcomes Yi,j vary normally around a mean
and standard deviation for that group.

• Variability between Groups: Group-specific parameters (the baseline) vary nor-
mally around a global intercept and standard deviation.

4.4 Covariate Justification

Table 6: Data Description and Justification for Inclusion

Field Label Justification

Treatment Treatment is the primary variable of interest in this MHOWS model.
Age Difference in age accounts for various physical and mental differences,

including pharmacokinetic and pharmacodynamic differences such as how
one’s body metabolizes and responds to opiates and their withdrawal [14].

Sex Biological differences between sexes can account for pharmacokinetic and
pharmacodynamics differences, including how one’s body metabolizes and
responds to opiates and withdrawal [15].

Site Number The location at which a participant is admitted may carry information
about local opiates or geographic factors that may influence one’s with-
drawal.

Race While race is a complex spectrum, one’s genetic makeup can lead to
pharmacodynamic differences in how the body responds to opiates [16].

MME (Over 30 days) Recency and severity of opiate use are direct indicators of potential de-
pendence and tolerance in participants. Participants are standardized at
the beginning of the study with an identical dose of morphine. How-
ever, this variable seek to capture if there is any additional variability in
MHOWS that results from differences in the severity of their opiate ad-
diction between participants prior to the study, standardizing each opiate
based on potency.

Cigarette Smoking Prior studies have shown that smoking before or during treatment was
associated with increased opiate withdrawal discomfort [17].

Weight Height/Weight may impact the effect of the dosages and can lead to
pharmacodynamic differences in how one’s body responds to opiates and
withdrawal [18].

Psychiatric Treat. Need Psychological factors including neuroticism have been shown to be asso-
ciated with distress of patient, which could lead to this as an effective
covariate for our survival analysis [19].

4.5 Exploratory Data Analysis

In Figure 3, we see the distribution of MHOWS has an interquartile range from about
15 to 36 and a mean of about 26 as observed in the data.
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Figure 3: Box Plot of MHOWS in Patients
in NIDA-CSP-1020

Figure 4: Correlation Plots of Covariates
with Treatment

Figure 5: Box Plots and Count Plots of Covariates varied by Site
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Figure 6: Box Plots of Treatment with Blood Pressure, MHOWS, and MMHOWS
(MHOWS minus systolic blood pressure)

In Figure 4, we find strong correlations between MHOWS and treatment, as well as
several variables related to opiate use, justifying our interest in MME or opiate usage
generally as a covariate of interest.

In Figure 5, we see that several covariates vary significantly across the three treatment
sites, supporting the decision of Yu et al. [6] to incorporate site as a random effect.

In Figure 6, the left box plot shows the difference in MHOWS scores; the middle-
box plot shows the difference in systolic blood pressure (showcasing lofexidine’s anti-
hypertensive effects). Lofexidine appears to significantly reduce blood pressure, thereby
greatly reducing MHOWS score. We seek to isolate its effect on other opiate withdrawal
symptoms in the MHOWS calculation in addition to it reducing blood pressure.

4.6 Distribution of MHOWS Scores

The calculations for the MHOWS score are noted in Table 5. The discontinuous signs
of withdrawal include Yawning, Lacrimation, Rhinorrhea, Perspiration, Tremor, Goose-
flesh, Anorexia, Restlessness, and Emesis. The total number of emesis episodes in a
24-hour period was recorded daily. In theory, the lowest possible score from the discon-
tinuous signs is 0 (no signs recorded), and the maximum is 133.

The continuous signs of withdrawal include Pupil Dilation, Temperature, Respira-
tion, Systolic Blood Pressure, and Weight. Each of these were compared to the baseline
value measured earlier in the study. The minimum possible score from this section is 0,
which means no changes from baseline. The maximum is harder to quantify, as changes
from baseline can range over a variety of values. We use the following estimations:

• Pupil dilation score: Based on previous studies on pupil dilation during with-
drawal [20], pupils dilate on average 1.4mm during withdrawal, with maximum
increases of almost 2mm. Thus, we can assume the max points from this assess-
ment is 20 points.

• Temperature: Normal body temperature is 37 degrees Celsius. Based on a study
of temperature during withdrawal, the maximum temperature increase during
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withdrawal for subjects was nearly 3 degrees (to 40 degrees) [21]. The maximum
points from this section is 30 points.

• Respiration: Respiration increases by roughly 16 breaths per minute [22]. We
can say the maximum score from this assessment is 20.

• Systolic blood pressure: There is a max 30mmHG increase, so the maximum
score from this section is 15.

• Weight Loss: Losing 15 pounds of weight at max is a reasonable estimate for a
short time-frame opiate withdrawal. The maximum score is 15 points.

Based on these estimations, we can reasonably estimate that MHOWS scores can
range from 0 to 133.

4.7 Justification For Explored β0 Priors

As noted in the protocol, previous studies provide information about possible MHOWS
score distributions on the morning of the second day lofexidine treatment[23] [24] [25].
We will include these findings in our assumptions when constructing prior distributions.
Importantly, we have that Day 5 MHOWS scores assume a distribution that is approx-
imately normal, so we will choose a normal prior. The following priors were considered
during the model-building and sensitivity analysis processes:

• Observed MHOWS scores from Phase II 3.2 mg/day lofexidine patients:

Since we aim to understand the effect of lofexidine versus placebo in reducing
Day 5 MHOWS scores, we decided that our prior distribution for the treatment
beta coefficient will be centered at 0, such that we are not biasing the results
by immediately assuming the efficacy of lofexidine. As such, even though our
global intercept—which can be interpreted as the mean MHOWS score when all
predictors are held at reference—has placebo as the reference treatment, we can
assume the distribution of MHOWS scores for lofexidine treatment to be similar.
From the Phase II lofexidine study, patients receiving 3.2 mg of lofexidine per
day had a mean MHOWS score of 19.3 with a standard deviation of 5.7 (n=6)
on the second day of treatment. We will thus set mu = 19.3. Our variance will
account for the observed within-group standard deviation as well as additional
variance. Since the study conditions are not exactly the same and it is possible
that the distributions of MHOWS scores are likely different between groups, we
hope the additional variance will better allow the observed data to shape our
posterior. Given an observed σ of 5.7, we have β0 ∼ N(19.3, 5.72 + τ) where τ is
an additional expression of uncertainty that we will vary in our sensitivity analysis.

• Observed MHOWS scores from Phase II 1.6 mg/day lofexidine patients:

Yu E et al. make the “conservative” assumption that of all of the treatments in
Phase II, 1.6mg of lofexidine a day most closely resembles a placebo treatment,
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using this fact in their Phase III power calculation [6]. We can proceed similarly,
using the mean and standard deviation of 1.6 mg/day MHOWS to form our normal
prior, once again factoring in additional uncertainty. Given an observed µ = 30.3
and σ = 11.1, we have β0 ∼ N(30.3, 11.12 + τ) where τ is an additional expression
of uncertainty that we will vary in our sensitivity analysis.

• A weakly informative prior for the global intercept:

Acknowledging that Phase II has an extremely small sample size, we can proceed
relying heavily on our idea that MHOWS scores lie between 0 and 133. We can
set a µ at the center of this distribution (66.5) with a large enough σ2 such that
the prior doesn’t give us much information outside of that (202).

4.8 Sensitivity Analysis Results

Table 7: The Impact of Global Prior
Mean and SD on Posterior Estimates

Mean SD Estimate SE Conf. Interval

19.3 2 29.12 6.99 [17.55, 40.63]
19.3 5 32.70 7.16 [20.67, 44.32]
19.3 7 33.21 7.06 [21.40, 44.74]
19.3 10 33.71 7.16 [21.73, 45.60]
30.3 2 36.87 6.61 [25.70, 47.44]
30.3 5 35.03 6.89 [23.78, 46.60]
30.3 7 34.84 7.08 [23.13, 46.66]
30.3 10 34.66 7.27 [22.73, 46.85]
66.5 20 36.32 8.20 [23.77, 54.16]

Figure 7: Posterior Distributions from
Sensitivity Analysis of Global Intercept

4.9 Mediation Analysis Assumptions

In performing a mediation analysis, we must satisfy the following assumptions: (1) The
exposure influences the mediator and the exposure and mediator both influence the
outcome and (2) There is no uncontrolled confounding [26].

In addressing (1), we first mention that the exposure is known to influence the
mediator from previous clinical research proving lofexidine to be an effective hypertension
treatment in reducing blood pressure [6]. We then measure the effect of the exposure on
the outcome via our model and know the mediator (blood pressure) directly influences
the outcome via its inclusion in the MHOWS calculation [6]. We thus satisfy the first
classical assumption for our mediation analysis.

In addressing (2) to ensure there is no uncontrolled confounding, we must consider
the confounding in all relationships that can be confounded: exposure–outcome, expo-
sure–mediator, and mediator–outcome. Given that the data is based on a clinical trial
with a randomized treatment exposure, the exposure-outcome and exposure-mediator
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relationships meet our assumption [26]. Furthermore, in our MHOWS model, we con-
trol for relevant data including demographics, physical and psychological health, and
addiction severity. After then using our systolic blood pressure measurement for our
auxiliary MHOWS model with these covariates, we have controlled for sources of bias
in pre-existing differences in our mediator, meeting the no uncontrolled confounding
assumption for the mediator-outcome relationship.

4.10 Cox Model Assumptions

In order to use the CPH model, we must adhere to the proportional hazards (PH)
assumption, which asserts that the hazards are proportional and constant over time for
different covariate levels (strata).

We argue that this assumption is likely to hold for our set of covariates. All of
our covariates being used are time-invariant after being measured at the beginning of
the study. As such, we would not expect their relative effect on different groups or
individuals to change or violate the PH assumption. Ultimately, however, this will need
to be rigorously checked with the given data by analyzing the Schoenfeld residuals of
the fitted Cox model. For the Schoenfeld residuals to demonstrate the PH assumption
has been met for our covariate, we expect to see them randomly distributed around zero
with no pattern, in order to demonstrate that the PH assumption has been met for each
covariate. The log-hazard ratio can also be analyzed; large values of a log-hazard ratio
global chi-squared test imply deviation from the proportional hazards assumption.

The results from a Chi-squared test of log-hazard ratios and plotting Schoenfeld
residuals for each of the covariates used in our CPH model are shown below. We find
that each of the covariates have a non-significant p-value, indicating a proportional-
ity of hazards, and that the Schoenfeld residuals are randomly distributed about zero,
indicating that the PH assumption holds.

Table 8: Chi-Square Test Results

Characteristic Chisq df p

Treatment 9.78e-01 1 0.32
Age 6.97e-05 1 0.99
Race 1.98e+00 2 0.37
Weight 6.17e-02 1 0.80
Gender 1.49e-02 1 0.90
Smokes Cigarettes 1.17e+00 1 0.28
Baseline Systolic BP 1.36e+00 1 0.24
MME over 30 days 9.14e-02 1 0.76
Need for Psychiatric Treat. 1.89e+00 1 0.17
GLOBAL 9.14e+00 10 0.52

Figure 8: Risk Scores by Treatment
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(a) Schoenfeld residuals for systolic BP (b) Schoenfeld residuals for cigarettes

(c) Schoenfeld residuals for gender (d) Schoenfeld residuals for MME 30d

(e) Schoenfeld residuals for psych. treat. (f) Schoenfeld residuals for race

(g) Schoenfeld residuals for treatment (h) Schoenfeld residuals for weight

Figure 9: Schoenfeld residuals for various factors
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